nf-core/rnaseq
RNA sequencing analysis pipeline using STAR, RSEM, HISAT2 or Salmon with gene/isoform counts and extensive quality control.
1.4.1
). The latest
stable release is
3.17.0
.
Introduction
Nextflow handles job submissions on SLURM or other environments, and supervises running the jobs. Thus the Nextflow process must run until the pipeline is finished. We recommend that you put the process running in the background through screen
/ tmux
or similar tool. Alternatively you can run nextflow within a cluster job submitted your job scheduler.
It is recommended to limit the Nextflow Java virtual machines memory. We recommend adding the following line to your environment (typically in ~/.bashrc
or ~./bash_profile
):
Running the pipeline
The typical command for running the pipeline is as follows:
This will launch the pipeline with the docker
configuration profile. See below for more information about profiles.
Note that the pipeline will create the following files in your working directory:
Updating the pipeline
When you run the above command, Nextflow automatically pulls the pipeline code from GitHub and stores it as a cached version. When running the pipeline after this, it will always use the cached version if available - even if the pipeline has been updated since. To make sure that you’re running the latest version of the pipeline, make sure that you regularly update the cached version of the pipeline:
Reproducibility
It’s a good idea to specify a pipeline version when running the pipeline on your data. This ensures that a specific version of the pipeline code and software are used when you run your pipeline. If you keep using the same tag, you’ll be running the same version of the pipeline, even if there have been changes to the code since.
First, go to the nf-core/rnaseq releases page and find the latest version number - numeric only (eg. 1.3.1
). Then specify this when running the pipeline with -r
(one hyphen) - eg. -r 1.3.1
.
This version number will be logged in reports when you run the pipeline, so that you’ll know what you used when you look back in the future.
Main arguments
-profile
Use this parameter to choose a configuration profile. Profiles can give configuration presets for different compute environments. Note that multiple profiles can be loaded, for example: -profile docker
- the order of arguments is important!
If -profile
is not specified at all the pipeline will be run locally and expects all software to be installed and available on the PATH
.
awsbatch
- A generic configuration profile to be used with AWS Batch.
conda
docker
- A generic configuration profile to be used with Docker
- Pulls software from dockerhub:
nfcore/rnaseq
singularity
- A generic configuration profile to be used with Singularity
- Pulls software from DockerHub:
nfcore/rnaseq
test
- A profile with a complete configuration for automated testing
- Includes links to test data so needs no other parameters
--reads
Use this to specify the location of your input FastQ files. For example:
Please note the following requirements:
- The path must be enclosed in quotes
- The path must have at least one
*
wildcard character - When using the pipeline with paired end data, the path must use
{1,2}
notation to specify read pairs.
If left unspecified, a default pattern is used: data/*{1,2}.fastq.gz
--singleEnd
By default, the pipeline expects paired-end data. If you have single-end data, you need to specify --singleEnd
on the command line when you launch the pipeline. A normal glob pattern, enclosed in quotation marks, can then be used for --reads
. For example:
It is not possible to run a mixture of single-end and paired-end files in one run.
Library strandedness
Three command line flags / config parameters set the library strandedness for a run:
--forwardStranded
--reverseStranded
--unStranded
If not set, the pipeline will be run as unstranded. Specifying --pico
makes the pipeline run in forwardStranded
mode.
You can set a default in a cutom Nextflow configuration file such as one saved in ~/.nextflow/config
(see the nextflow docs for more). For example:
If you have a default strandedness set in your personal config file you can use --unStranded
to overwrite it for a given run.
These flags affect the commands used for several steps in the pipeline - namely HISAT2, featureCounts, RSeQC (RPKM_saturation.py
), Qualimap and StringTie:
--forwardStranded
- HISAT2:
--rna-strandness F
/--rna-strandness FR
- featureCounts:
-s 1
- RSeQC:
-d ++,--
/-d 1++,1--,2+-,2-+
- Qualimap:
-pe strand-specific-forward
- StringTie:
--fr
- HISAT2:
--reverseStranded
- HISAT2:
--rna-strandness R
/--rna-strandness RF
- featureCounts:
-s 2
- RSeQC:
-d +-,-+
/-d 1+-,1-+,2++,2--
- Qualimap:
-pe strand-specific-reverse
- StringTie:
--rf
- HISAT2:
FeatureCounts Extra Gene Names
Default “gene_name
” Attribute Type
By default, the pipeline uses gene_name
as the default gene identifier group. In case you need to adjust this, specify using the option --fc_group_features
to use a different category present in your provided GTF file. Please also take care to use a suitable attribute to categorize the biotype
of the selected features in your GTF then, using the option --fc_group_features_type
(default: gene_biotype
).
Extra Gene Names or IDs
By default, the pipeline uses gene_names
as additional gene identifiers apart from ENSEMBL identifiers in the pipeline.
This behaviour can be modified by specifying --fc_extra_attributes
when running the pipeline, which is passed on to featureCounts as an --extraAttributes
parameter.
See the user guide of the Subread package here.
Note that you can also specify more than one desired value, separated by a comma:
--fc_extra_attributes gene_id,...
Default “exon
” Type
By default, the pipeline uses exon
as the default to assign reads. In case you need to adjust this, specify using the option --fc_count_type
to use a different category present in your provided GTF file (3rd column). For example, for nuclear RNA-seq, one could count reads in introns in addition to exons using --fc_count_type transcript
.
Transcriptome mapping with Salmon
Use the --pseudo aligner salmon
option to perform additional quantification at the transcript- and gene-level using Salmon. This will be run in addition to either STAR or HiSat2 and cannot be run in isolation, mainly because it allows you to obtain QC metrics with respect to the genomic alignments. By default, the pipeline will use the genome fasta and gtf file to generate the transcript fasta file, and then to build the Salmon index. You can override these parameters using the --transcript_fasta
and --salmon_index
, respectively.
The default Salmon parameters and a k-mer size of 31 are used to create the index. As discussed here), a k-mer size off 31 works well with reads that are 75bp or longer.
Alignment tool
By default, the pipeline uses STAR to align the raw FastQ reads to the reference genome. STAR is fast and common, but requires a lot of memory to run, typically around 38GB for the Human GRCh37 reference genome.
If you prefer, you can use HISAT2 as the alignment tool instead. Developed by the same group behind the popular Tophat aligner, HISAT2 has a much smaller memory footprint.
To use HISAT2, use the parameter --aligner hisat2
or set params.aligner = 'hisat2'
in your config file. Alternatively, you can also use --aligner salmon
if you want to just perform a fast mapping to the transcriptome with Salmon (you will also have to supply the --transcriptome
parameter or both a --fasta
and --gtf
/--gff
).
Reference genomes
The pipeline config files come bundled with paths to the illumina iGenomes reference index files. If running with docker or AWS, the configuration is set up to use the AWS-iGenomes resource.
--genome
(using iGenomes)
There are 31 different species supported in the iGenomes references. To run the pipeline, you must specify which to use with the --genome
flag.
You can find the keys to specify the genomes in the iGenomes config file. Common genomes that are supported are:
- Human
--genome GRCh37
- Mouse
--genome GRCm38
- Drosophila
--genome BDGP6
- S. cerevisiae
--genome 'R64-1-1'
There are numerous others - check the config file for more.
Note that you can use the same configuration setup to save sets of reference files for your own use, even if they are not part of the iGenomes resource. See the Nextflow documentation for instructions on where to save such a file.
The syntax for this reference configuration is as follows:
--star_index
, --hisat2_index
, --fasta
, --gtf
, --bed12
If you prefer, you can specify the full path to your reference genome when you run the pipeline:
Note that only one of --star_index
/ --hisat2_index
are needed depending on which aligner you are using (see below).
The minimum requirements are a Fasta and GTF file. Note that --gff
and --bed
are auto-derived from the --gtf
where needed and are not required. If these are provided and no others, then all other reference files will be automatically generated by the pipeline. If you specify a --gff
file, it will be converted to GTF format automatically by the pipeline. If you specify both, the GTF is preferred over the GFF by the pipeline.
--saveReference
Supply this parameter to save any generated reference genome files to your results folder. These can then be used for future pipeline runs, reducing processing times.
--saveTrimmed
By default, trimmed FastQ files will not be saved to the results directory. Specify this flag (or set to true in your config file) to copy these files when complete.
`—saveUnaligned“
By default, the pipeline doesn’t export unaligned/unmapped reads to a separate file. Using this option, STAR / HISAT2 and Salmon will produce a separate BAM file or a list of reads that were not aligned in a separate output directory.
--saveAlignedIntermediates
As above, by default intermediate BAM files from the alignment will not be saved. The final BAM files created after the Picard MarkDuplicates step are always saved. Set to true to also copy out BAM files from STAR / HISAT2 and sorting steps.
--gencode
If your --gtf
file is in GENCODE format and you would like to run Salmon (--pseudo_aligner salmon
) you will need to provide this parameter in order to build the Salmon index appropriately. The params.fc_group_features_type=gene_type
will also be set as explained below.
GENCODE gene annotations are slightly different from ENSEMBL or iGenome annotations in two ways.
”Type” of gene
The gene_biotype
field which is typically found in Ensembl GTF files contains a key word description regarding the type of gene e.g. protein_coding
, lincRNA
, rRNA
. In GENCODE GTF files this field has been renamed to gene_type
.
ENSEMBL version:
GENCODE version:
Therefore, for featureCounts
to correctly count the different biotypes when using a GENCODE annotation the fc_group_features_type
is automatically set to gene_type
when the --gencode
flag is specified.
Transcript IDs in FASTA files
The transcript IDs in GENCODE fasta files are separated by vertical pipes (|
) rather than spaces.
ENSEMBL version:
GENCODE version:
This issue can be overcome by specifying the --gencode
flag when building the Salmon index.
--skipBiotypeQC
This skips the BiotypeQC step in the featureCounts
process, explicitly useful when there is no available GTF/GFF with any biotype
or similar information that could be used before.
--skipAlignment
By default, the pipeline aligns the input reads to the genome using either HISAT2 or STAR and counts gene expression using featureCounts. If you prefer to skip alignment altogether and only get transcript/gene expression counts with pseudo alignment, use this flag. Note that you will also need to specify --pseudo_aligner salmon
. If you have a custom transcriptome, supply that with --transcript_fasta
.
Compressed Reference File Input
By default, the pipeline assumes that the reference genome files are all uncompressed, i.e. raw fasta or gtf files. If instead you intend to use compressed or gzipped references, like directly from ENSEMBL:
This assumes that ALL of the reference files are compressed, including the reference indices, e.g. for STAR, HiSat2 or Salmon. For instructions on how to create your own compressed reference files, see the instructions below. This also includes any files specified with --additional_fasta
, which are assumed to be compressed as well when the --fasta
file is compressed. The pipeline auto-detects gz
input for reference files. Mixing of gz
and non-compressed input is not possible!
Create compressed (tar.gz) STAR indices
STAR indices can be created by using --saveReference
, and then using tar
on them:
HISAT2 indices
HiSAT2 indices can be created by using --saveReference
, and then using tar
on them:
Salmon index
Salmon indices can be created by using --saveReference
, and then using tar
on them:
Adapter Trimming
If specific additional trimming is required (for example, from additional tags), you can use any of the following command line parameters. These affect the command used to launch TrimGalore!
--clip_r1 [int]
Instructs Trim Galore to remove bp from the 5’ end of read 1 (or single-end reads).
--clip_r2 [int]
Instructs Trim Galore to remove bp from the 5’ end of read 2 (paired-end reads only).
--three_prime_clip_r1 [int]
Instructs Trim Galore to remove bp from the 3’ end of read 1 AFTER adapter/quality trimming has been performed.
--three_prime_clip_r2 [int]
Instructs Trim Galore to remove bp from the 3’ end of read 2 AFTER adapter/quality trimming has been performed.
--trim_nextseq [int]
This enables the option —nextseq-trim=3’CUTOFF within Cutadapt in Trim Galore, which will set a quality cutoff (that is normally given with -q instead), but qualities of G bases are ignored. This trimming is in common for the NextSeq- and NovaSeq-platforms, where basecalls without any signal are called as high-quality G bases.
--skipTrimming
This allows to skip the trimming process to save time when re-analyzing data that has been trimmed already.
Ribosomal RNA removal
If rRNA removal is desired (for example, metatranscriptomics), add the following command line parameters.
--removeRiboRNA
Instructs to use SortMeRNA to remove reads related to ribosomal RNA (or any patterns found in the sequences defined by --rRNA_database_manifest
).
--saveNonRiboRNAReads
By default, non-rRNA FastQ files will not be saved to the results directory. Specify this flag (or set to true in your config file) to copy these files when complete.
--rRNA_database_manifest
By default, rRNA databases in github biocore/sortmerna/rRNA_databases
are used. Here the path to a text file can be provided that contains paths to fasta files (one per line, no ’ or ” for file names) that will be used for database creation for SortMeRNA instead of the default ones. You can see an example in the directory assets/rrna-default-dbs.txt
. Consequently, similar reads to these sequences will be removed.
Library Prep Presets
Some command line options are available to automatically set parameters for common RNA-seq library preparation kits.
Note that these presets override other command line arguments. So if you specify
--pico --clip_r1 0
, the--clip_r1
bit will be ignored.
If you have a kit that you’d like a preset added for, please let us know!
--pico
Sets trimming and standedness settings for the SMARTer Stranded Total RNA-Seq Kit - Pico Input kit.
Equivalent to: --forwardStranded
--clip_r1 3
--three_prime_clip_r2 3
Skipping QC steps
The pipeline contains a large number of quality control steps. Sometimes, it may not be desirable to run all of them if time and compute resources are limited. The following options make this easy:
--skipQC
- Skip all QC steps, apart from MultiQC--skipFastQC
- Skip FastQC--skipRseQC
- Skip RSeQC--skipQualimap
- Skip Qualimap--skipPreseq
- Skip Preseq--skipDupRadar
- Skip dupRadar (and Picard MarkDuplicates)--skipEdgeR
- Skip edgeR MDS plot and heatmap--skipMultiQC
- Skip MultiQC
Job resources
Automatic resubmission
Each step in the pipeline has a default set of requirements for number of CPUs, memory and time. For most of the steps in the pipeline, if the job exits with an error code of 143
(exceeded requested resources) it will automatically resubmit with higher requests (2 x original, then 3 x original). If it still fails after three times then the pipeline is stopped.
Custom resource requests
Wherever process-specific requirements are set in the pipeline, the default value can be changed by creating a custom config file. See the files hosted at nf-core/configs
for examples.
If you are likely to be running nf-core
pipelines regularly it may be a good idea to request that your custom config file is uploaded to the nf-core/configs
git repository. Before you do this please can you test that the config file works with your pipeline of choice using the -c
parameter (see definition below). You can then create a pull request to the nf-core/configs
repository with the addition of your config file, associated documentation file (see examples in nf-core/configs/docs
), and amending nfcore_custom.config
to include your custom profile.
If you have any questions or issues please send us a message on Slack.
AWS Batch specific parameters
Running the pipeline on AWS Batch requires a couple of specific parameters to be set according to your AWS Batch configuration. Please use the -awsbatch
profile and then specify all of the following parameters.
--awsqueue
The JobQueue that you intend to use on AWS Batch.
--awsregion
The AWS region to run your job in. Default is set to eu-west-1
but can be adjusted to your needs.
Please make sure to also set the -w/--work-dir
and --outdir
parameters to a S3 storage bucket of your choice - you’ll get an error message notifying you if you didn’t.
Other command line parameters
--outdir
The output directory where the results will be saved.
--email
Set this parameter to your e-mail address to get a summary e-mail with details of the run sent to you when the workflow exits. If set in your user config file (~/.nextflow/config
) then you don’t need to specify this on the command line for every run.
--email_on_fail
This works exactly as with --email
, except emails are only sent if the workflow is not successful.
-name
Name for the pipeline run. If not specified, Nextflow will automatically generate a random mnemonic.
This is used in the MultiQC report (if not default) and in the summary HTML / e-mail (always).
NB: Single hyphen (core Nextflow option)
-resume
Specify this when restarting a pipeline. Nextflow will used cached results from any pipeline steps where the inputs are the same, continuing from where it got to previously.
You can also supply a run name to resume a specific run: -resume [run-name]
. Use the nextflow log
command to show previous run names.
NB: Single hyphen (core Nextflow option)
-c
Specify the path to a specific config file (this is a core NextFlow command).
NB: Single hyphen (core Nextflow option)
Note - you can use this to override pipeline defaults.
--custom_config_version
Provide git commit id for custom Institutional configs hosted at nf-core/configs
. This was implemented for reproducibility purposes. Default is set to master
.
--custom_config_base
If you’re running offline, nextflow will not be able to fetch the institutional config files
from the internet. If you don’t need them, then this is not a problem. If you do need them,
you should download the files from the repo and tell nextflow where to find them with the
custom_config_base
option. For example:
Note that the nf-core/tools helper package has a
download
command to download all required pipeline files + singularity containers + institutional configs in one go for you, to make this process easier.
--max_memory
Use to set a top-limit for the default memory requirement for each process.
Should be a string in the format integer-unit. eg. --max_memory '8.GB'
--max_time
Use to set a top-limit for the default time requirement for each process.
Should be a string in the format integer-unit. eg. --max_time '2.h'
--max_cpus
Use to set a top-limit for the default CPU requirement for each process.
Should be a string in the format integer-unit. eg. --max_cpus 1
--hisat_build_memory
Required amount of memory in GB to build HISAT2 index with splice sites.
The HiSAT2 index build can proceed with or without exon / splice junction information.
To work with this, a very large amount of memory is required.
If this memory is not available, the index build will proceed without splicing information.
The --hisat_build_memory
option changes this threshold. By default it is 200GB
- if your system
--max_memory
is set to 128GB
but your genome is small enough to build using this, then you can
allow the exon build to proceed by supplying --hisat_build_memory 100GB
--sampleLevel
Used to turn of the edgeR MDS and heatmap. Set automatically when running on fewer than 3 samples.
--plaintext_email
Set to receive plain-text e-mails instead of HTML formatted.
--monochrome_logs
Set to disable colourful command line output and live life in monochrome.
--multiqc_config
Specify a path to a custom MultiQC configuration file.
Stand-alone scripts
The bin
directory contains some scripts used by the pipeline which may also be run manually:
gtf2bed
- Script used to generate the BED12 reference files used by RSeQC. Takes a
.gtf
file as input
- Script used to generate the BED12 reference files used by RSeQC. Takes a
dupRadar.r
- dupRadar script used in the dupRadar pipeline process.
edgeR_heatmap_MDS.r
- edgeR script used in the Sample Correlation process